
Creditworthiness Assessment: is your Client Creditworthy (and how do you make 
them so)?


Keywords: #python #optimization #lp #linearprogramming #credit #creditworthiness #calculation 
#numpy #scipy #sympy


1. Abstract


In this white paper we discuss building a piece of software which performs Creditworthiness 
Assessment based on hundreds of parameters included in loan applications for a popular 
motorcycle brand. The process involves creating an algorithm which calculates the risk associated 
with each loan. The goal is to suggest modifications to the loan application parameters, which 
would adjust them so that they represent good risk for the expected return.


2. Problem statement


As a creditor issuing loans for a popular motorcycle brand, we want to understand, whether a 
particular loan application represents good risk to us and, if not, how we can revert to the 
applicant with recommendations on how they can modify their application to pass our 
creditworthiness criteria.


3. Background


Let’s imagine you issue loans for motorcycles of a popular brand and you have an elaborate 
spreadsheet which calculates, for every loan application, the risk and worth associated with the 
applicant. However, the spreadsheet only gives you a yes/no answers in terms of the 
creditworthiness, no additional feedback is produced. As it happens, the computations of the 
creditworthiness constitute an Optimization problem in general and a Linear Programming 
problem (an LP) in particular. This is an advanced computational problem, which would be tricky 
(although, admittedly, not impossible) to represent in a spreadsheet.


The approach to this problem involves creating dedicated computer code in Python, which solves 
the Optimization problem using the SciPy package and the SymPy package. The code not only 
answers whether a particular application "is green" (represents good risk to us), but also returns 
recommendations on how to aptly modify the the application, if it’s "not green".


4. Solution


Let’s think about a specific loan application. Here’s what it might consist of.




Loan application components


1. Bike price

2. Prior balance

3. Down payment

4. Trade-in value

5. Rebates

6. Service Plan

7. GAP

8. Tire & Wheel

9. Other


In order to qualify as good risk, the loan must pass all of the following tests.


Loan tests


A. LTV Test

B. Monthly payment test

C. Down payment test

D. New or used test

E. Min income test

F. Admin approval

G. Min FICO test


Each of these tests represents a linear combination of the above application components. The loan 
application, therefore, lives in a multidimensional space where the above values can be modified 
and for each application it can be stated, whether it is good risk to us or not.


However, if we decide an application is not good risk, what can we do besides simply rejecting it?


Here’s where the computational part comes in. This Optimization problem can be aptly 
investigated using Python code, which looks into the application and searches for potential 
application improvement opportunities. This algorithm has internal knowledge of the Optimization 
problem and takes advantage of it by utilizing the capabilities of SciPy and SymPy.


This way we can easily revert to the loan applicant with recommendations, such as:

• reduce the bike price,

• increase down payment,

• resign from service plan,

• reduce insurance,

• etc.




Of course, for each of these a specific value of the change is suggested, so that the applicant can 
craft and adjust their application to their needs. 


This algorithm was in fact developed at Jagan Solutions for a client based in the US, based on specs 
included in the calculation document, and subjected to elaborate automated testing. We used 
Linear Programming and Linear Optimization in this Python and NumPy/SciPy project.


5. Conclusion


Giving loans is all about risk so if you are a lender and want to profit in your business, you need to 
know which application represents good risk to you and which doesn’t. This might sound trivial, 
but here’s a question: what do you do with loan applicants whose applications are not good risk to 
you? It would be a waste to turn them all down and certainly there are high granularity 
recommendations on how to improve these applications.


In this white paper we have shown that the recommendations can be generated live for each of 
the applications and, therefore, we can assist the loan applicants in adjusting their applications so 
that they match the creditor's criteria. What’s more, we can do that with acute precision driven by 
the numerical engines of Python libraries.


This optimization project entailed building software which performed creditworthiness calculations 
based on hundreds of parameters included in loan applications. In the process we created an 
algorithm, which calculated the risk associated with each loan. We developed this algorithm based 
on specs included in a calculation document and subjected it to elaborate automated testing. We 
used Linear Programming and Linear Optimization in this Python and NumPy/SciPy project for a 
client based in the US.


If you are a lender, you probably have an advanced method of calculating whether a given loan 
application represents good risk to you. However, if it doesn't, are you able to revert to your 
potential loan taker with feedback instructing them how to amend their application so that it 
passes all the required criteria? Our solutions enable a fully flexible approach to lending, where the 
potential loan taker is guided through the lending process so that he or she arrives at a deal 
attractive to both sides.


Do you process lots of loan applications and would like to improve their score instead of turning 
them down? Are you looking for a way to automate this process by utilizing advanced Optimization 
resources? We would be happy to harness the know-how associated with this white paper to help 
you do just that.




6. References


1. https://www.investopedia.com/terms/c/credit-worthiness.asp

2. https://en.wikipedia.org/wiki/Mathematical_optimization

3. https://en.wikipedia.org/wiki/Linear_programming

4. https://www.python.org/

5. https://www.sympy.org/

6. https://scipy.org/

7. https://docs.scipy.org/doc/scipy/reference/optimize.html

8. https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html


Would you like to hear more? Please get in touch with us via https://www.jagansolutions.com/
contact-us.


https://www.investopedia.com/terms/c/credit-worthiness.asp
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Linear_programming
https://www.python.org/
https://www.sympy.org/
https://scipy.org/
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
https://www.jagansolutions.com/contact-us
https://www.jagansolutions.com/contact-us

