
How to
Seamlessly
Upgrade
Your Business
to

eBook

1. 	 A Brief History of PHP Popularity	 6

1.1	 The Current PHP Usage Timeline	 8

2.	 Why You Need to Upgrade to PHP 8	 11

2.1	 Convince Your Boss	 15

3.	 The Upgrade Process	 18

3.1	 I have PHP 5.x. What’s next?	 21

3.2	 Choosing Migration to PHP 7.x	 22

3.3	 How Migrating to PHP 7.x Works	 24

3.4	 Choosing Migration to PHP 8.x	 27

3.5	 How Migrating to PHP 8.x Works	 28

Table of
contents

3polcode.com

INTRODUCTION

So you’re exploring how to upgrade
your business’s PHP applications to
the latest major 8.x version for its
powerful features and robust security
measures. Great choice!

What can you expect during a PHP 8 migration? What’s the best way

to prepare your code, technical teams and business operations for the

biggest update in the history of PHP? What are the business risks of not

upgrading?

This eBook is designed to guide anyone, at any experience level,

towards a seamless migration to PHP 8. It will cover why your business

should consider upgrading, and what benefits and challenges await

if you choose to do so. We will take you through everything you need

to know and prepare beforehand, depending on which technology or

version you’re currently using.

If your site or business apps are running on PHP 5 or PHP 7, it is likely that

you will need to refactor some code to make it PHP 8 compatible. Hope­

fully you’ll be convinced by the end that it’s worth the jump, because

PHP 8.x includes significant improvements that will make your sites more

efficient, reliable and secure.

Let’s get into it!

https://polcode.com

4polcode.com

INTRODUCTION

With 16 years of experience in building PHP—
powered sites and web apps, the Dev Team at
Polcode created this guide after conducting
successful migrations for our clients worldwide.
If your site runs on PHP and you’re not sure
what to do next, we can audit your current
site or apps and develop a plan for upgrading.
Reach us at polcode.com to schedule a free
consultation.

https://polcode.com
https://polcode.com

A Brief History of
PHP Popularity

1

6polcode.com

A BRIEF HISTORY OF PHP POPULARITY

A Brief History of
PHP Popularity
PHP began as a simple open—source project in 1994 by Rasmus Lerdorf, as

an intuitive server—side scripting language, mostly used for templating and

tracking simple page activities. The scripting tools were coined “Personal

Home Page Tools,” and the PHP name has been retained ever since. In 1995,

the source code was made available to the public, and anyone could use

the code freely, motivating many developers to contribute bug fixes to the

code and improve upon it as a community. Around 15,000 sites were using

PHP within the first year of its official release.

In the following decade, PHP experienced rapid changes and a steady

rate of adoption across the web. Sometime after PHP 3’s release in June

1998, an estimated 10% of the world’s web servers were running PHP. By

the time PHP 4 (under the ‘Zend Engine’) was released in 1999, and the

core redesign was finally adopted, it became difficult to measure just

how much of the internet was running on PHP.

It wasn’t until 2004 (PHP 5) that we saw serious open—source develop­

ment and popularity at the highest scales. PHP had just gone through

https://polcode.com

7polcode.com

A BRIEF HISTORY OF PHP POPULARITY

a major evolution, supporting object—oriented programming, PDO

extension, and performance improvements. The world’s top tech

businesses at the time were predominantly using PHP to power their

server—side programming, with hundreds of millions of sites potentially

powered by PHP.

Today, PHP is still regarded as the open—source language that drives

the modern web. By current estimates, almost 80% of the visible web

is built upon PHP according to W3techs. Slack, Wikipedia, WordPress

and Mailchimp continue to rely on PHP. It remains an easy—to—learn

language, and is backed by extremely productive frameworks like

Laravel and Symfony that make it cost—effective for development.

Despite many elite tech giants using complex and intimidating tech

stacks for their backend systems, PHP is still perceived as the reliable,

productive, cost—efficient workhorse for most developers. It continues to

be the backbone of many successful web projects.

However, problems can arise if businesses are not on the latest

version of PHP 8.x. Support for the last PHP 7 version (7.4) ended on

November 28, 2021 and security support will end in November 2022,

potentially creating security risks.

https://polcode.com
https://w3techs.com

8polcode.com

A BRIEF HISTORY OF PHP POPULARITY

Year

Major

Version Description

1994—1996 PHP/FI

—

PHP 2

The earliest version of PHP was in use on at least 15,000

web sites around the world. In 1995 the source code

was released publicly, allowing anyone to use it as they

saw fit. Despite being open source and contributors

providing bug fixes, it was still largely maintained by one

single developer.

1997—1998 PHP 3 By mid—1997, around 50,000 websites were powered by

PHP, culminating in the release of PHP 3 which is the

earliest version that resembles the PHP that we know

today.

Two developers led the major changes. Suraski and

Andi Gutmans rewrote the core of PHP/FI 2.0 in 1997 and

formed the underlying base of PHP 3, while changing

the language’s name to the recursive acronym PHP:

Hypertext Preprocessor. Public testing of PHP 3 began

and it was officially launched in June 1998.

2000 PHP 4 PHP 4 introduced the concepts of core scalability and

optimization. Under the new Zend Engine, PHP 4 could

handle complex applications with more efficiency, and

support integrations better than previous versions.

By this time, the web was diversifying and expanding

at an exponential rate, making it difficult to estimate

PHP usage, but potentially millions of web servers were

running PHP at the time.

The Current
PHP Usage
Timeline

continue
on next page

https://polcode.com

9polcode.com

A BRIEF HISTORY OF PHP POPULARITY

2004—2015 PHP 5 By the time PHP 5 was released, it was already a world­

wide phenomenon with potentially hundreds of millions

of websites running PHP backend code. Dozens of core

developers contributed to new code, and the PHP open

source community consisted of hundreds of supporters,

bug fixers and enthusiasts.

2015—2020 PHP 7 By the time PHP turned 20 years old, (there was no

release for PHP 6) the seventh version contained the

most modern version of PHP ever. It offered a complete

language renewal powered by the Zend Engine 3, highly

regarded for its ability to power mobile, web, cloud and

enterprise applications with ease. By all attempts at

estimates, the claim that, “Nearly 80% of the visible

web is powered by PHP” was made around this time,

and despite major contributors leaving the project’s

core development, PHP continued to find success and

adoption across many of the world’s enterprises and

small businesses alike.

2020—Today PHP 8 Today, PHP remains the most widely used server—side

programming language in the world. The latest version

of PHP introduced many powerful new features, opening

up new possibilities for business products, as well as

streamlining code execution performance. Frequent

bugs and time—sink tasks have largely been optimized

for developers, decreasing the time it will take for

feature—rich services to reach the market.

https://polcode.com

Why You Need
to Upgrade
to PHP 8

2

11polcode.com

WHY YOU NEED TO UPGRADE TO PHP 8

Why You Need
to Upgrade
to PHP 8

Explore the top benefits of upgrading
to the latest version of PHP, as well as
the consequences for not regularly
maintaining a healthy and updated
PHP codebase.

1. Security Matters

Companies left running unsupported versions of PHP risk opening them­

selves to the latest hacks, ransomware and malicious attacks that have

become all too common over the last few years. PHP’s popularity makes

it even more of a target for hackers targeting vulnerabilities. The best

way to avoid these security issues is to update your PHP stack as soon

as possible, and as frequently as possible.

https://polcode.com

12polcode.com

WHY YOU NEED TO UPGRADE TO PHP 8

2. Peak Performance

As you can expect, being on the latest versions of PHP will produce

better performance results overall, and the latest version of PHP

8.x is no different. Page load speeds, throughput, and utilization of

resources under load have been optimized to handle the gargan­

tuan amounts of data that the web now demands. Improvements to

performance have direct benefits towards less memory usage, fewer

servers, and happier customer experiences.

OpenBenchmarking.org

Score, More Is Better

PHPBench v0.8.1
PHP Benchmark Suite

PHP 5.3.29

PHP 5.4.45

PHP 5.5.38

PHP 5.6.40

PHP 7.0.33

PHP 7.1.33

PHP 7.2.24

PHP 7.3.11

PHP 7.4-RC6

PHP 8.0-dev

120000 240000 360000 480000 600000

SE +/- 341.00, N = 3

SE +/- 459.39, N = 3

SE +/- 286.49, N = 3

SE +/- 342.92, N = 3

SE +/- 557.57, N = 3

SE +/- 584.36, N = 3

SE +/- 1760.67, N = 3

SE +/- 4395.45, N = 3

SE +/- 1867.45, N = 3

SE +/- 2976.47, N = 3

150702

170873

172730

171764

363564

415210

475270

504201

503224

538209

Phoronix Test Suite 9.2.0m2

3. Cost Efficient Coding

Software development has trended towards doing more with less, as

business owners carefully measure between speed, quality, and cost.

Upgrading to PHP 8 influences these factors almost immediately, largely

https://polcode.com

13polcode.com

WHY YOU NEED TO UPGRADE TO PHP 8

in part to its asynchronous design qualities and JIT compiler—allowing

developers to quickly implement asynchronous applications that deliver

continuously updated application data to users.

4. Developer—Talent Access

Finding talent to deal with a legacy codebase only goes in one direction

as time goes on; it’s harder to find, and more expensive to hire. It can

be difficult to find programmers with a high level of knowledge about

a legacy version, and many of your business requests will require ever—

more complex ‘hacks’ to work around, increasing feature delivery time,

frustration and budgets. Upgrading to the latest version of PHP ensures

that your business can hire from a wider range of available talent pools.

5. Compatibility & Capability

Early on during a major version update, there are a few areas which

are not code—compatible on the newer versions of PHP. For example,

at the launch of PHP 8, some WordPress sites and themes were incom­

patible at launch. However, this is typically only temporary, and the

real reward is about achieving new capabilities with rich feature

sets, as each PHP version builds upon its predecessors. For instance,

reclassifying and retyping error handling has relieved developers of

the most distressing part of their jobs. Simple pleasures such as the

@—operator no longer silencing fatal errors have saved many a head­

ache on PHP 8, while dozens of other changes which can be found

here: https://stitcher.io/blog/new-in-php-8, if you’re curious.

https://polcode.com
https://stitcher.io/blog/new-in-php-8

14polcode.com

WHY YOU NEED TO UPGRADE TO PHP 8

6. Lower Maintenance Costs

Letting your PHP version fall behind the most current version is not just

a security risk—it’s a path towards technical debt, where it eventually

becomes insurmountable to expedite the delivery of features and

changes to your business. Even though your business may not have the

resources or time available to upgrade to the latest version every single

time, it is important to keep maintenance at a regular pace.

7. Faster Time to Market

And finally, the latest version of PHP optimizes the developer experience

and code execution performance, decreasing the major bottlenecks of time

(and frustration) that previous versions held over developers in the past. Most

notably the JIT Compiler gives web developers a real performance boost in

complex calculations, paving the way for data—heavy tasks; perhaps easing

the creation of features centered around Artificial Intelligence and Machine

Learning.

https://polcode.com

15polcode.com

WHY YOU NEED TO UPGRADE TO PHP 8

Convince
Your Boss

In our experience, making the switch to PHP 8 often comes with

convincing a higher—up that software upgrades are not a luxury, but

rather a necessity. If you or your team are worried about convincing

a decision—maker to adopt PHP 8, then take a moment to follow these

tips before making your ask.

Gaining support from your management is invaluable and a PHP devel­

oper is best suited to perform this task. Compliance with the latest

version makes developer life easier almost instantly, and can lead to

countless benefits on the business end, not to mention greater compli­

ance with the latest security standards

	s Do Your Homework

In addition to citing the information in this eBook it’s always a

good tactic to gather data on your current usage statistics. It’s likely

that you have some way to track how a web application behaves

in certain scenarios, and identify which parts are underperforming.

https://polcode.com

16polcode.com

WHY YOU NEED TO UPGRADE TO PHP 8

	s Be Ready to do a Cost—Benefit Analysis

If your boss or manager is more of a numbers person, present

information that they can understand. Get specific in terms of

profitability, business and potential loss. How might PHP 8 increase

workplace productivity? What are the costs of not upgrading?

Which risks can be mitigated by upgrading? These questions should

be answered in the form of numbers. Quantifying your argument will

have a stronger impact on a role that is focused on analytics, not

developer jargon. Think about the short—term and long—term goals

that can be achieved by performing a PHP 8 upgrade.

	s Suggest Ways to Avoid Risk

Risk aversion is top of mind whenever a major upgrade is proposed.

Outline or list the best courses of action to eliminate risk. If you’re not

sure of the risks involved, there are plenty of PHP experts to consult,

like our PHP Developer Team. After 16 years of closely following PHP

upgrades and conducting dozens of migrations for our clients, we

like to think we know a thing or two about successful PHP updates!

https://polcode.com
https://polcode.com/services/web-development/backend-development/

The
Upgrade
Process

3

18polcode.com

THE UPGRADE PROCESS

The Upgrade
Process
So you’re ready to kick off your PHP upgrade process. Now what? Before

starting any migration process to a new version, there are two steps

that form a solid foundation before any code refactoring comes into

play. The following preparations will lay the groundwork for a successful

migration:

	☑ Deploy tools to catch errors
or exception monitors

	☑ Perform application tests

These two actions form a solid foundation that should not be missed

before performing any major application change, update, performance

improvement, or rewrite.

Deploy Error / Exception Monitoring

Many popular PHP frameworks such as Symfony and Laravel have built—in

error and exception reporting modules. In addition to the convenience

offered by saving error reports to files or databases, they also offer the

ability (natively or via external package), to push these changes to specially

prepared tools that help manage, view or solve reported problems.

https://polcode.com

19polcode.com

THE UPGRADE PROCESS

Tools that can help in aggregation and problem solving include: Sentry,

Rollbar, or CloudWatch – a tool built into the AWS infrastructure. Each

one has official or community libraries that allow the application to be

integrated with the tool, in either a regular PHP application or a website

based on Symfony or Laravel.

These integrations allow you to catch application errors, including their

exact origin code, and the reasons for their origin. Even with extensive

tests on local developers’ environments, if any error appears in the

production application, it will be easy to spot and correct it very quickly.

Such applications provide a number of possible methods and channels

of notifications: from a simple email message, through messaging noti­

fications (Slack, Teams), to SMS messages.

Perform Application Tests

In an ideal situation, tests are written alongside software development.

However, it is often known that brilliant ideas or innovative solutions in

a fast—paced, dynamic market cannot wait. In these situations, the MVP

of the application is typically built with manual tests and basic func­

tional tests for the most sensitive elements of the application.

When preparing for a migration, writing tests are a worthwhile invest­

ment of time. Tests are a kind of programming documentation of busi­

ness logic. They are invaluable at describing what needs to work, what

data is to be returned, how to process it and/or what the results of given

queries are to be. Thanks to such documentation, the programmer can

see what was the idea behind the operation of a given module or part

of the page.

If you decide to perform tests, we recommend three types of tests

that will make life easier for the future of refactoring the application’s

codebase.

https://polcode.com

20polcode.com

THE UPGRADE PROCESS

•	 Functional Tests
These are the so—called black box tests. In these kinds of tests,
the programmer or tester writing them need not be aware of
how functionalities are implemented in the system. They know
what data the application should provide and what data it
should return. Thanks to this, tests can be written in ways that
actually check the functions and functioning of the applica-
tion, but not how the data is processed, which can be helpful
for third—party programmers, or protecting need—to—know
proprietary secrets.

•	 Unit Tests
Unit tests are tests that validate one specific small part of the
application. Let’s say we have an ecommerce store. Our assump-
tion is that the name of the products should not be repeated
in the store, so we have the functionality to check whether the
name of the item provided by the user already exists. The given
functionality should return some form of response that there
is no product with that name, or that it already exists. And it
is precisely because of this small aspect of an application that is
aptly named a unit test.

•	 Performance
These types of tests are exactly as the name states. Given
a performance threshold, they test the application to ensure
it exceeds the minimum limitations expected. Let’s say we
have a blog containing articles. A performance test may be
written that assumes page load speeds should not exceed,
for example, 400ms and not require more than 5MB of RAM.
After refactoring and changes to the application, we can
run performance tests to ensure that our previous criteria for
performance have still been maintained.

With these types of tests in our arsenal, developers can verifiably prove

how the upgrade process changed a variety of factors, from version to

version. The test results will show any losses or gains in performance, as well

as catch any errors that may have arisen from changes in the codebase.

https://polcode.com

21polcode.com

THE UPGRADE PROCESS PHP 5

I have PHP 5.x.
What’s next?

Skip past PHP 6. Choose 7.x or 8.x

Version 6 of PHP was eventually scrapped, as many of its planned

features were introduced in the releases of versions up to PHP 5.6. Soon

afterwards, PHP 7 was released.

PHP 6 was scheduled to make major changes to Unicode support,

improvements to the technology’s object model, and more. Work on this

version was prolonged so much that some of the functionalities planned

for the sixth version were released as 5.3. Then it was realized that there

was no point in releasing the remaining changes under the number “6”

and it was decided that they would be included as a version of PHP 5.4.

After that, the next versions, up to 5.6, were created, and then work on

the seventh version was started.

https://polcode.com

22polcode.com

THE UPGRADE PROCESS PHP 7

Choosing Migration
to PHP 7.x

PHP 7.x: Safe and Performant

For any brand—new projects, we recommend jumping straight to PHP 8.

However, many existing projects with large codebases, that already run

in production, may simply find the value they need in upgrading from,

say, PHP 5, to PHP 7. This is especially true for businesses which value

stability over bleeding—edge features.

PHP version 7 introduced key changes in both the structured and object—

oriented programming model. It improved performance, speed of script

launch and many new amenities that help programmers. During the subse­

quent releases of 7.1 and 7.2, PHP had significantly improved the comfort

of using the language, as well as the speed of processing scripts, which

translated into higher speed of loading pages based on this technology.

The latest version of PHP has also introduced a number of improvements in

terms of application security and the security of the language itself.

PHP 5 vs PHP 7 Average Load Time [ms]

1600

PHP 5 PHP 7

Drupal Drupal Commerce

1200

800

400

0
50125

1330

440

m
s

https://polcode.com

23polcode.com

THE UPGRADE PROCESS PHP 7

PHP offers greater stability, language uniformity, security and more

advanced object—oriented and typing mechanisms than its previous

versions. These qualities directly translate into how stable, secure and

reliable applications written in this language can be. Well—established

businesses rely on these expectations and a strong application archi­

tecture, as they offer fewer errors, mitigate risks, and shorten time of

software development.

Many tests performed by programmers or application owners have

shown that their websites based on PHP 7 are faster than the same

applications based on version 5 by up to 400%. The loading times on the

language side were reduced by up to a few seconds. In today’s world

when milliseconds make or break user experiences, these performance

gains make all the difference. Increasing performance also means that

resources allocated to maintaining the infrastructure can be efficiently

optimized, consuming less server resources alongside improving the

end—user experience.

WORDPRESS 4.1

185
205

244 248 262

545

619

700

R
eq

/s
ec

600

500

400

300

200

100

0
PHP 5.3/APC PHP 5.3 PHP 5.4 PHP 5.5 PHP 5.6 PHP 5.7 HHVM 3.5

Apart from many new features, PHP 7 also removed some obsolete

solutions and functionalities. As a result, the transition from PHP 5.6 to

PHP 7 must be done with some caution and care in order to eliminate

or replace the already unsupported aspects of the older release before

carrying it out.

https://polcode.com

24polcode.com

THE UPGRADE PROCESS PHP 7

How Migrating
to PHP 7.x Works

The range of language functionalities that have changed and that

should be taken into account when upgrading to version 7 are:

•	 handling exceptions and errors,

•	 support for variables, functions and indirect methods,

•	 changes in the functioning of functions (e.g. list ()),

•	 automatic sorting of tables,

•	 foreach activity,

•	 and many others smaller topics.

The entire list of changes that may lead to incompatibility issues after

upgrading to PHP 7 can be found here:

	¼ Backward incompatible changes—Manual

	¼ Deprecated features in PHP 7.0.x—Manual

https://polcode.com
https://www.php.net/manual/en/migration70.incompatible.php
https://www.php.net/manual/en/migration70.deprecated.php

25polcode.com

THE UPGRADE PROCESS PHP 7

Zero downtime deployment is a scenario used for making the migration

process run smoothly. One good way to do this involves:

•	 isolating a copy of the application to a new location (e.g. a folder
on the same server),

•	 connecting all the necessary tools, such as database, queuing
services or cache, to have a perfect representation of the
production environment. Of course, these tools are to be
attached as in production, but with test access, so that the
tests on the application copy do not affect the working already
version of the website,

•	 checking the compliance of installed libraries with the new
version in theory,

•	 raising the language version of the application copy to the
desired release. The latest version of PHP 7 is PHP 7.4,

•	 checking the compliance of installed libraries with the new
version in practice,

•	 launching previously written automatic tests,

•	 analyzing the obtained results on the previously attached error /
exception handler and repair.

An application with well—written automatic tests (unit tests, e2e tests

or functional tests), will conveniently show you where it’s necessary to

make corrections or changes. Automated testing concepts also apply

to libraries or frameworks used in the application. If the application does

not have precise tests, the team will have to manually test all the func­

tionalities offered by the system, increasing workload significantly. Even

if the application has such tests, it will be a good idea to go through

the scenarios of using it manually, which are critical for the application.

https://polcode.com

26polcode.com

THE UPGRADE PROCESS PHP 7

After the application copy has been thoroughly analyzed, relevant bugs

have been fixed and the incompatible or outdated language functions

have been changed, it is time to launch the latest version of the website.

Zero downtime deployment in this case will consist of connecting access

to tools, database, etc. to the copy of the production application, then

performing the last manual tests on the application copy, and then

switching the domain / server to the appropriate location containing

the new version of the application.

Of course, the process described here greatly simplifies the steps and

aspects that must be taken care of by the developer team approaching

and struggling to upgrade the language version to a newer one. There are

many differences, functions and decisions that can completely change the

process described above. It all depends on the technologies, frameworks,

packages, external tools, API and many other factors used.

https://polcode.com

27polcode.com

THE UPGRADE PROCESS PHP 8

Choosing Migration
to PHP 8.x

PHP 8: Powerful, Secure,
Cutting—Edge Features

For any new software projects, there’s really no reason to avoid starting

with PHP 8. The decision to migrate to PHP 8 from an existing application,

however, is usually driven by the need for access to a ton of improved

features, as well as speed, security and programming facilities that make

the process of software development and maintenance much easier.

Another key advantage of PHP 8 is to reduce unnecessary code written

by programmers by adding to the language the solutions they use in a

simpler, more accessible version.

The most important list of changes that were introduced in PHP 8 include:

•	 attributes,

•	 function and method argument names,

•	 unions,

•	 the safe null operator,

•	 the JIT compiler.

You can read the entire list of changes in PHP 8.0: New Features—Manual

including subsequent versions.

https://polcode.com
https://www.php.net/manual/en/migration80.new-features.php

28polcode.com

THE UPGRADE PROCESS PHP 8

How Migrating
to PHP 8.x Works

The process of migrating from version 7.4 to 8.0 requires you to rethink

the aspects that may make the code incompatible, as well as those that

have been changed or abandoned in the new version. Key conside­

rations to make include:

•	 comparing text to numbers—a very dangerous change that
may not give any signs of error directly, but hide under logical
conditions,

•	 word matching reservations,

•	 removing functions like create_function or each,

•	 changes in the interpretation of implicit grouping of activities by
parentheses,

•	 new pgsql extension function names,

•	 changes in the ZIP extension,

•	 and a lot more!

These and other issues can be easily found on the page:

	¼ PHP 8.0: Backward Incompatible Changes—Manual

	¼ PHP 8.0: Deprecated Features—Manual

Apart from the differences of the changed or withdrawn functions, the

migration process to the next version will be the same as for the previous

version. There are no differences in the preparation or steps to be taken

here.

https://polcode.com
https://www.php.net/manual/en/migration80.incompatible.php
https://www.php.net/manual/en/migration80.deprecated.php

29polcode.com

THE UPGRADE PROCESS

Ready to
Upgrade?

Hopefully we’ve convinced you that upgrading your PHP version can

bring enormous benefit to your organization:

	☑ greater application security,

	☑ improved software stability,

	☑ faster scripts and page loading,

	☑ stable architecture which translates into fast software delivery,

	☑ cutting—edge technologies to encourage and motivate the team.

The Polcode team has migrated our clients to newer versions of

PHP over the last 16 years, enabling them to expand, optimize and

improve the ever—changing codebase that powers their business.

Useful links to the PHP community and the largest frameworks:

	¼ https://laravelversions.com/en

	¼ https://laravel.com

	¼ https://symfony.com/releases

	¼ https://www.php.net/supported-versions.php

	¼ https://kinsta.com/blog/php-benchmarks

https://polcode.com
https://laravelversions.com/en
https://laravel.com
https://symfony.com/releases
https://www.php.net/supported-versions.php
https://kinsta.com/blog/php-benchmarks

Let’s talk!

We will audit your current site or apps
and develop a plan for upgrading.

Schedule a free consultation:

sales@polcode.com

polcode.com

https://polcode.com

	A Brief History of
PHP Popularity
	Why You Need
to Upgrade
to PHP 8
	Convince
Your Boss

	The Upgrade
Process
	I have PHP 5.x.
What’s next?
	Choosing
Migration
to PHP 7.x
	How Migrating
to PHP 7.x Works
	Choosing Migration
to PHP 8.x
	How Migrating
to PHP 8.x Works

	A Brief History of PHP Popularity
	Why You Need to Upgrade to PHP 8
	Convince Your Boss

	The Upgrade Process
	I have PHP 5.x. What’s next?
	Choosing Migration to PHP 7.x
	How Migrating to PHP 7.x Works
	Choosing Migration to PHP 8.x
	How Migrating to PHP 8.x Works
	Ready to Upgrade?

